New extremal binary self-dual codes from block circulant matrices and block quadratic residue circulant matrices
نویسندگان
چکیده
In this paper, we construct self-dual codes from a construction that involves both block circulant matrices and quadratic residue matrices. We provide conditions when can yield codes. of various lengths over F2 F2+uF2. Using extensions, neighbours sequences neighbours, many new particular, one code length 66 51 68.
منابع مشابه
New extremal binary self-dual codes from F4+uF4-lifts of quadratic circulant codes over F4
In this work, quadratic double and quadratic bordered double circulant constructions are applied to F4 + uF4 as well as F4, as a result of which extremal binary self-dual codes of length 56 and 64 are obtained. The binary extension theorems as well as the ring extension version are used to obtain 7 extremal self-dual binary codes of length 58, 24 extremal self-dual binary codes of length 66 and...
متن کاملEigenvectors of block circulant and alternating circulant matrices
The eigenvectors and eigenvalues of block circulant matrices had been found for real symmetric matrices with symmetric submatrices, and for block circulant matrices with circulant submatrices. The eigenvectors are now found for general block circulant matrices, including the Jordan Canonical Form for defective eigenvectors. That analysis is applied to Stephen J. Watson’s alternating circulant m...
متن کاملFormally self-dual linear binary codes from circulant graphs
In 2002, Tonchev first constructed some linear binary codes defined by the adjacency matrices of undirected graphs. So graph is an important tool for searching optimum code. In this paper, we introduce a new method of searching (proposed) optimum formally self-dual linear binary codes from circulant graphs. AMS Subject Classification 2010: 94B05, 05C50, 05C25.
متن کاملFast circulant block Jacket transform based on the Pauli matrices
Owing to its orthogonality, simplicity of the inversion and fast algorithms, Jacket transform generalising from the Hadamard transform has played important roles in signal and image processing, mobile communication for coding design, cryptography, etc. In this paper, inspired by the emerging block Jacket transform, a new class of circulant block Jacket matrices (CBJMs) are mathematically define...
متن کاملAn Impropriety Test Based on Block-Skew-Circulant Matrices
Since improper (noncircular) complex signals require adequate tools such as widely linear filtering, a generalized likelihood ratio test has been proposed in the literature to verify whether or not a given signal is improper. This test is based on the augmented complex formulation, which is sometimes regarded as the most convenient way of handling improper signals. In this paper, we show that a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2021
ISSN: ['1872-681X', '0012-365X']
DOI: https://doi.org/10.1016/j.disc.2021.112590